Karrikins: Regulators Involved in Phytohormone Signaling Networks during Seed Germination and Seedling Development
نویسندگان
چکیده
Seed germination and early seedling establishment are critical stages during a plant's life cycle. These stages are precisely regulated by multiple internal factors, including phytohormones and environmental cues such as light. As a family of small molecules discovered in wildfire smoke, karrikins (KARs) play a key role in various biological processes, including seed dormancy release, germination regulation, and seedling establishment. KARs show a high similarity with strigolactone (SL) in both chemical structure and signaling transduction pathways. Current evidence shows that KARs may regulate seed germination by mediating the biosynthesis and/or signaling transduction of abscisic acid (ABA), gibberellin (GA) and auxin [indoleacetic acid (IAA)]. Interestingly, KARs regulate seed germination differently in different species. Furthermore, the promotion effect on seedling establishment implies that KARs have a great potential application in alleviating shade avoidance response, which attracts more and more attention in plant molecular biology. In these processes, KARs may have complicated interactions with phytohormones, especially with IAA. In this updated review, we summarize the current understanding of the relationship between KARs and SL in the chemical structure, signaling pathway and the regulation of plant growth and development. Further, the crosstalk between KARs and phytohormones in regulating seed germination and seedling development and that between KARs and IAA during shade responses are discussed. Finally, future challenges and research directions for the KAR research field are suggested.
منابع مشابه
KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.
Karrikins are butenolide compounds released from burning vegetation that stimulate seed germination and enhance seedling photomorphogenesis. Strigolactones are structurally similar plant hormones that regulate shoot and root development, and promote the germination of parasitic weed seeds. In Arabidopsis, the F-box protein MAX2 is required for responses to karrikins and strigolactones, and the ...
متن کاملArabidopsis CPR5 Independently Regulates Seed Germination and Postgermination Arrest of Development through LOX Pathway and ABA Signaling
The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants over...
متن کاملKarrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light.
Discovery of the primary seed germination stimulant in smoke, 3-methyl-2H-furo[2,3-c]pyran-2-one (KAR1), has resulted in identification of a family of structurally related plant growth regulators, karrikins. KAR1 acts as a key germination trigger for many species from fire-prone, Mediterranean climates, but a molecular mechanism for this response remains unknown. We demonstrate that Arabidopsis...
متن کاملKarrikins enhance light responses during germination and seedling development in Arabidopsis thaliana.
Karrikins are a class of seed germination stimulants identified in smoke from wildfires. Microarray analysis of imbibed Arabidopsis thaliana seeds was performed to identify transcriptional responses to KAR(1) before germination. A small set of genes that are regulated by KAR(1), even when germination is prevented by the absence of gibberellin biosynthesis or light, were identified. Light-induce...
متن کاملF-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana.
Smoke is an important abiotic cue for plant regeneration in postfire landscapes. Karrikins are a class of compounds discovered in smoke that promote seed germination and influence early development of many plants by an unknown mechanism. A genetic screen for karrikin-insensitive mutants in Arabidopsis thaliana revealed that karrikin signaling requires the F-box protein MAX2, which also mediates...
متن کامل